نظرسنجی
نظر شما در رابطه با ارائه خدمات شرکت چگونه است؟
آمار بازدید سایت
  • کل بازدید : 414325
  • بازدید امروز : 106
  • بازدید این ماه : 9377
سازه فولادی نوعی سازه است که مصالح اصلی آن که برای تحمل نیروها و انتقال آنها به کار می‌رود از فولاد است . اتصالات به کار رفته در این نوع سازه‌ها از نوع جوشی، پرچی و یا پیچ می‌باشد و بسته به نوع اتصالات قطعات طرح شده و کنترل‌های مربوطه بر روی آنها انجام می‌شود.
در حال حاضر فولاد از مهمترین مصالح برای ساخت ساختمان وپل و سایر سازه‌های ثابت است مقاومت فولاد(تنش تسلیم) مورد استفاده در بازه۲۴۰۰ تا ۷۰۰۰ kgr/cm2   است که برای ساختمانهای معمولی از فولاد با مقاومت ۲۴۰۰ که به آن فولاد نرمه گفته می‌شود استفاده می‌گردد.
نقش فولاد در ساختمان

فولاد یکی از مهمترین مصالح ساختمانی به شمار می‌آید. فولاد از احیا شدن سنگ آهن  به همراه کک و اکسیژن در کوره‌های بلند با درجه حرارت زیاد بدست می اید. آهن خام که به این ترتیب به دست می‌آید بین ۳ تا ۴ درصد کربن دارد.
مشخصات مکانیکی فولاد
مهمترین مشخصه مکانیکی فولاد نمودار تنش _ کرنش آن می‌باشد که از روی آن تنش تسلیم و یا تنش جاری شدن بدست می‌آید.
فولاد بعنوان ماده‌ای با مشخصات خاص و منحصر بفرد، مدتهاست در ساخت ساختمانها کاربرد دارد. قابلیت اجرای دقیق، رفتار سازه ای  معین، نسبت مقاومت به وزن مناسب، در کنار امکان اجرای سریع سازه های فولادی همراه با جزئیات و ظرافتهای معماری، فولاد را بعنوان مصالحی منحصر و ارزان در پروژه‌های ساختمانی مطرح نموده است؛ به نحوی که اگر ضعفهای محدود این ماده نظیر مقاومت کم در برابر خوردگی و عدم مقاومت در آتش‌سوزیهای شدید به درستی مورد توجه و کنترل قرار گیرند، امکانات وسیعی در اختیار طراح قرار می‌دهد که در هیچ ماده دیگر قابل دستیابی نیست. فولاد، آلیاژی از آهن و کربن  است که کمتر از ۲ درصد کربن دارد. در فولاد ساختمانی عمومأ در حدود ۳ درصد کربن و ناخالصیهای دیگری مانند فسفر، سولفور،اکسیژن و نیتروژن و چند ماده دیگر موجود می‌باشد. ساخت فولاد شامل اکسیداسیون و  جدانمودن عناصر اضافی و غیر ضروری موجود در محصول کوره بلند و اضافه کردن عناصر مورد نیاز برای تولید ترکیب دلخواه است. برای ساخت فولاد، از چهار روش اصلی استفاده می‌شود. این روشها عبارتند از: روش کوره باز،
روش دمیدن اکسیژن، روش کوره برقی و  روش خلاء.
آنچه فولاد را به عنوان یک مصالح ساختمانی  مناسب معرفی کرده می‌تواند شامل موارد زیر باشد:

  • تغییر شکل در اثر بارگذاری و ایجاد تنش یکنواخت
  • وجود خاصیت الاستیک و پلاستیک
  • شکل پذیری
  • خاصیت چکش خواری و تورق
  • خاصیت خمش پذیری
  • خاصیت فنری و جهندگی
  • خاصیت چقرمگی
  • خاصیت سختی استاتیکی و دینامیکی
  • مقاومت نسبی بالا
  • ضریب ارتجاعی بالا
  • جوش پذیری
  • همگن بودن
  • امکان استفاده از ضایعات
  • امکان تقویت مقاطع در صورت نیاز
دسته‌بندی
سازه‌های فولادی به سه دسته تقسیم می‌شوند

  • سازه های قاب بندی شده : که مجموعه‌ای از اعضای محوری، خمشی و یا محوری خمشی اند.
  • سازه های پوسته ای :  منابع تگهداری مایعات و گازها که نیروی محوری حاکم است.
  • سازه های معلق :  که در آن نیروی کششی حاکم است.
منظور از سازه‌های فولادی در عمران معمولاً سازه های قاب بندی شده است . نقش قاب در ساختمان انتقال بارهای مرده و بارزنده  وزلزله و برف از سازه به پی میباشد. و پایداری کلی سازه راحفظ می‌کند.
برای ساخت سازه‌های ساختمانی بیشتر ازپروفیل های نورد شده استفاده می‌شود اگر ابعاد طراحی شده مقادیر دیگری باشد می‌توان با استفاده از ورق‌های موجود در بازار پروفیل مربوطه را تهیه کرد.
طراحی سازه های فولادی
انتخاب نوع مقطع، روش ساخت ، روش بهره‌برداری و محل ساخت ساختمان، خصوصیات و ویزگیهای متنوعی برای ساخت اسکلت باربر یک ساختمان بوجود می‌آورد. مزیتهای هر سیستم سازه ای و مصالح مورد نیاز آن سیستم را در صورتی می‌توان بکار برد که خصوصیات و ویژگیهای آن مصالح و سیستمها در مرحله طراحی به حساب آورده شود و طراح باید در مورد هر یک از مصالح به درستی قضاوت کند. این موضوع بویژه در ساختمانهایی که اسکلت فولادی دارند،ضروری است. معیارهای زیر اهمیت زیادی در طراحی سازه دارد: - نوع مقطع - آرایش و روش قرار گیری مقاطع - فواصل تکیه گاهی - اندازه دهانه‌های سقف - نوع مهاربندی - نوع سیستم صلب کننده - محل قرارگیری سیستم صلب کننده (سیستم فضاسازی داخلی)
طراحی سازه های فولادی با استفاده از روش مهاربندی :
تمام ساختمانها باید برای مقاومت در برابر نیروی زلزله و باد و یا دیگر نیروهای افقی صلب شوند سیستم صلب کننده باید:

  • نیروهای جانبی زا به فونداسیون منتقل میکنند.
  • تغییر مکانهای افقی را محدود کند.
در ساختمانهای بلند باید ملاحظات ویژه‌ای برای جلوگیری از ایجاد نوسانات ناشی از باد در نظر گرفته شود. بزرگی نیروهای افقی اعمال شده در اثر باد به عوامل زیر بستگی دارد:
  • سرعت باد
  • شکل آیرودینامیکی ساختمان
  • وضعیت سطح نما
  • روشهای صلب کردن
یک قاب سازه‌ای فولادی را می‌توان به یکی از روشهای زیر مهاربندی کرد:
  • سیستمهای قاب صلب
  • سیستمهای قاب بادبندی
  • دیوارهای بتنی بصورت دیوارهای برشی یا هسته‌های بتنی
انتخاب روش صحیح مهاربندی، اهمیت عمده‌ای در طراحی سازه‌ای دارد و حتی ممکن است کل اندیشه طراحی یک ساختمان بلند مرتبه را تحت تاثیر قرار دهد. مهار بندی به وسیله اعضای بادبندی یا دیوارهای بتنی به صورت دیافراگم صلب، نقاط ثابتی را در ساختمان ایجاد می‌کند، به گونه‌ای که آزادی عمل درجانمایی و معماری داخل ساختمان را محدود می‌کند.
طراحی سازه های فولادی با توجه به اجزای تشکیل دهنده فضاهای داخلی ساختمان:
انتخاب سیستم مناسب برای اجزای داخلی ساختمان به عوامل مختلفی بستگی دارد. روشهای زیر به طور رایج در ساخت سقفهای متکی به تیر های فولادی به کار می‌روند:

  • دال بتنی پیش ساخته
  • عرشه فولادی با بتن درجا
  • دال درجا برروی بتن
عملکرد مرکب بین دال بتنی و تیر فولادی که در هر سه روش امکان‌پذیر است، سبب اقتصادی شدن ساخت می‌گردد. مسئله حفاظت قسمتهای فولادی سقف در برابر آتش‌سوزی باید در اجرای سقف در نظر گرفته شود. استفاده از سقف کاذب می‌تواند این کار را به خوبی انجام دهد. در سازه‌های اسکلت فلزی، معمولأ دیوارهای خارجی باربر نیستند، برای ساخت این دیوارها، بنابر شرایط موجود، از مصالح مختلف استفاده می‌شود.
توجیه اقتصادی سازه‌های فولادی
در ارزیابی اقتصادی یک سازه فولادی، فقط در نظر گرفتن قیمت مصالح ساختمانی و نیروی انسانی کفایت نمی‌کند و بقیه عوامل موثر در این موضوع باید مورد بررسی قرار گیرد. موارد زیر در اقتصاد یک ساختمان موثر است

  • قیمت زمین: بدلیل کوچک بودن مقاطع عرضی در ساختمانهای فولادی، فضای کمتری توسط اسکلت سازه اشغال شده و در مقایسه با سازه‌های بتنی، ساختمانهای فلزی در پلان دارای سطح موثر بیشتری هستند. بنابراین هزینه زمین در هر متر مربع مفید ساختمان، در ساختمانهای فلزی کمتر خواهد بود.
  • مصالح در دسترس
  • ارزش نهایی ساختمان: هرچه مدت زمان ساخت یک ساختمان کوتاهتر باشد، هزینه نهایی آن ساختمان کمتر خواهد بود. با توجه به روشهای مختلف ساخت سازه، متوجه می‌شویم که در مقایسه با سایر روشها، ساخت سازه‌های فلزی زمان کمتری صرف می‌کند.
  • هزینه اسکلت اصلی سازه (سفت کاری )
  • تاثیرنازک کاری
  • تاثیر نصب تجهیرات و تاسیسات
  • نحوه تاثیر این عوامل در بهره‌برداری بهینه از ساختمان
  • هزینه ایجاد تغییرات داخلی و بهسازی در ساختمان
  • هزینه تخریب (در ساختمانهای با عمر کوتاه)
میزان مصرف فولاد در ساختمانهای فلزی
در ساختمانهای فلزی، هزینه با توجه به میزان مصرف فولاد در هر متر مربع مساحت کف (تصویر افقی) یا متر مکعب ساختمان محاسبه می‌شود. هزینه ساخت و میزان مصرف فولاد به عوامل زیر بستگی دارد:

  • تعداد طبقات
  • بار اعمال شده به طبقات
  • دهانه‌ها در اطراف ستون
  • ضخامت سقف
  • سیستم سازه‌ای (سیستم انتقال بارهای قائم و جانبی)
انتقال بار در سازه‌های فولادی
سازه‌های فولادی مشتمل بر تعدادی تیر و ستون به شکل قاب و نیز شامل تعدادی تقویت کننده، به منظور ایستایی بیشتر می‌باشد. بدیهی است انتقال بارهای افقی و قائم از طریق این اجزاء صورت می‌گیرد. به این صورت که:

  • سقف ، بارهای عمودی را تحمل کرده و بصورت افقی، از طریق تیرها به تکیه گاههای تیر منتقل می‌کند.
  • سیستم باربر قائم (ستون‌ها)، بارها را از تکیه گاههای دو سر تیر به فونداسیون انتقال می‌دهد.
  • همچنین سیستم‌های مهاربندی قائم و افقی، بارهای جانبی ناشی ازباد،زلزله، فشار زمین و ... را به فونداسیونها منتقل می‌نمایند.
ماهیت انتقال بار از طریق تیرها به تکیه گاهها و روش قرارگیری تیرها (تیرریزی) عوامل زیر بستگی دارد
  • نوع مقطع قابل استفاده با توجه به طراحی معماری
  • فواصل تکیه گاهها و طول دهانه تیر با توجه به طراحی سازه‌ها
  • روش انتقال بار توسط اجزای باربر
  • سیستم تکیه گاهی انتخاب شده (صلب، نیمه صلب، ساده)
طراحی اعضای خمشی سازه های فلزی :
تنش مجاز برای اعضای خمشی بدون نیروی فشاری مطابق زیر است
الف) برای بال‌ها.
ب) برای اعضای جان ساخته شده از میلگرد و یا مقاطع غیر میلگرد.
د) برای ورق‌های نشیمن.
طراحی اعضای فشاری – خمشی سازه های فلزی :
در صورتیکه فاصله بین گره‌ها مساوی ویا بیشتر از ۶۰ سانتی‌متر باشد، اعضای فوقانی تیرچه‌ها باید به نحوی طراحی شوند که رابطه زیر در گره‌ها برقرار شود و همچنین باید رابطه زیر دربین دو گره برقرارگردد:

  • برای اعضای میانی تیرچه ها
  • برای اعضای کناری تیرچه‌ها
  •  Fe تنش مجاز اولر و L فاصله بین گره‌ها می‌باشد.
محدودیت‌های لاغری اعضا
ضریب لاغری(L/r) در اعضای میانی وکناری بال‌ها، همچنین در اعضا ی فشاری وکششی جان تیرچه نباید از مقادیر زیر تجاوز نماید:

  • در اعضای میانی بال فوقانی ۹۰
  • در اعضای کناری بال فوقانی ۱۲۰
  • در اعضای فشاری جان ۲۰۰
  • دراعضای کششی ۲۴۰
ضوابط ویژه اعضای جان تیرچه‌ها (کنترل برش)
حداقل نیروی برشی قائم که برای اعضاء باید در نظر گرفته شود. نباید از ۲۵ درصد عکس العمل تکیه گاهی کمتر باشد.
در مواردیکه اعضای جان تیرچه‌ها تحت اثر ترکیب تنش‌های فشاری وخمشی قرار گیرند. باید بر اساس ضوابط اعضای فشاری – خمشی طراحی گردند. در حالتی که خمش در این اعضا، موجب انحنای دو طرفه آنها گردد، ضریب Cm معادل ۰٫۴ در نظر گرفته می‌شود.
مقاومت جوش
اتصالات جوش اعضا باید بتواند حداقل دوبرابر بار طراحی تیرچه‌ها را تحمل نماید.
وصله
اتصال دوپروفیل بصورت وصله درهر نقطه ازبال مجاز است. وصله بصورت جوش سربه سر در اعضای کششی باید بتواند حداقل مقاومتی معادل 1.14Fy.A را از خود نشان دهد که درآن A کل سطح مقطع عضو وصله شده می‌باشد.
۲-طراحی مرحله دوم بعد از گرفتن بتن:
در این مرحله مقطع مرکب شامل تیرچه فولادی وبتن باید تلاشهای ناشی ازتمام بارهای وارده به سقف (قبل و بعد از گرفتن بتن) راتحمل کند.
 سازه فولادی نوعی سازه است که مصالح اصلی آن که برای تحمل نیروها و انتقال آنها به کار می‌رود از فولاد است . اتصالات به کار رفته در این نوع سازه‌ها از نوع جوشی، پرچی و یا پیچ می‌باشد و بسته به نوع اتصالات قطعات طرح شده و کنترل‌های مربوطه بر روی آنها انجام می‌شود.
در حال حاضر فولاد از مهمترین مصالح برای ساخت ساختمان وپل و سایر سازه‌های ثابت است مقاومت فولاد(تنش تسلیم) مورد استفاده در بازه۲۴۰۰ تا ۷۰۰۰ kgr/cm2   است که برای ساختمانهای معمولی از فولاد با مقاومت ۲۴۰۰ که به آن فولاد نرمه گفته می‌شود استفاده می‌گردد.
نقش فولاد در ساختمان
فولاد یکی از مهمترین مصالح ساختمانی به شمار می‌آید. فولاد از احیا شدن سنگ آهن  به همراه کک و اکسیژن در کوره‌های بلند با درجه حرارت زیاد بدست می اید. آهن خام که به این ترتیب به دست می‌آید بین ۳ تا ۴ درصد کربن دارد.
مشخصات مکانیکی فولاد
مهمترین مشخصه مکانیکی فولاد نمودار تنش _ کرنش آن می‌باشد که از روی آن تنش تسلیم و یا تنش جاری شدن بدست می‌آید.
فولاد بعنوان ماده‌ای با مشخصات خاص و منحصر بفرد، مدتهاست در ساخت ساختمانها کاربرد دارد. قابلیت اجرای دقیق، رفتار سازه ای  معین، نسبت مقاومت به وزن مناسب، در کنار امکان اجرای سریع سازه های فولادی همراه با جزئیات و ظرافتهای معماری، فولاد را بعنوان مصالحی منحصر و ارزان در پروژه‌های ساختمانی مطرح نموده است؛ به نحوی که اگر ضعفهای محدود این ماده نظیر مقاومت کم در برابر خوردگی و عدم مقاومت در آتش‌سوزیهای شدید به درستی مورد توجه و کنترل قرار گیرند، امکانات وسیعی در اختیار طراح قرار می‌دهد که در هیچ ماده دیگر قابل دستیابی نیست. فولاد، آلیاژی از آهن و کربن  است که کمتر از ۲ درصد کربن دارد. در فولاد ساختمانی عمومأ در حدود ۳ درصد کربن و ناخالصیهای دیگری مانند فسفر، سولفور،اکسیژن و نیتروژن و چند ماده دیگر موجود می‌باشد. ساخت فولاد شامل اکسیداسیون و  جدانمودن عناصر اضافی و غیر ضروری موجود در محصول کوره بلند و اضافه کردن عناصر مورد نیاز برای تولید ترکیب دلخواه است. برای ساخت فولاد، از چهار روش اصلی استفاده می‌شود. این روشها عبارتند از: روش کوره باز، روش دمیدن اکسیژن، روش کوره برقی و  روش خلاء.
آنچه فولاد را به عنوان یک مصالح ساختمانی  مناسب معرفی کرده می‌تواند شامل موارد زیر باشد:

  • تغییر شکل در اثر بارگذاری و ایجاد تنش یکنواخت
  • وجود خاصیت الاستیک و پلاستیک
  • شکل پذیری
  • خاصیت چکش خواری و تورق
  • خاصیت خمش پذیری
  • خاصیت فنری و جهندگی
  • خاصیت چقرمگی
  • خاصیت سختی استاتیکی و دینامیکی
  • مقاومت نسبی بالا
  • ضریب ارتجاعی بالا
  • جوش پذیری
  • همگن بودن
  • امکان استفاده از ضایعات
  • امکان تقویت مقاطع در صورت نیاز
دسته‌بندی
سازه‌های فولادی به سه دسته تقسیم می‌شوند

  • سازه های قاب بندی شده : که مجموعه‌ای از اعضای محوری، خمشی و یا محوری خمشی اند.
  • سازه های پوسته ای :  منابع تگهداری مایعات و گازها که نیروی محوری حاکم است.
  • سازه های معلق :  که در آن نیروی کششی حاکم است.
منظور از سازه‌های فولادی در عمران معمولاً سازه های قاب بندی شده است . نقش قاب در ساختمان انتقال بارهای مرده و بارزنده  وزلزله و برف از سازه به پی میباشد. و پایداری کلی سازه راحفظ می‌کند.
برای ساخت سازه‌های ساختمانی بیشتر ازپروفیل های نورد شده استفاده می‌شود اگر ابعاد طراحی شده مقادیر دیگری باشد می‌توان با استفاده از ورق‌های موجود در بازار پروفیل مربوطه را تهیه کرد.
طراحی سازه های فولادی
انتخاب نوع مقطع، روش ساخت ، روش بهره‌برداری و محل ساخت ساختمان، خصوصیات و ویزگیهای متنوعی برای ساخت اسکلت باربر یک ساختمان بوجود می‌آورد. مزیتهای هر سیستم سازه ای و مصالح مورد نیاز آن سیستم را در صورتی می‌توان بکار برد که خصوصیات و ویژگیهای آن مصالح و سیستمها در مرحله طراحی به حساب آورده شود و طراح باید در مورد هر یک از مصالح به درستی قضاوت کند. این موضوع بویژه در ساختمانهایی که اسکلت فولادی دارند،ضروری است. معیارهای زیر اهمیت زیادی در طراحی سازه دارد: - نوع مقطع - آرایش و روش قرار گیری مقاطع - فواصل تکیه گاهی - اندازه دهانه‌های سقف - نوع مهاربندی - نوع سیستم صلب کننده - محل قرارگیری سیستم صلب کننده (سیستم فضاسازی داخلی)
طراحی سازه های فولادی با استفاده از روش مهاربندی :
تمام ساختمانها باید برای مقاومت در برابر نیروی زلزله و باد و یا دیگر نیروهای افقی صلب شوند سیستم صلب کننده باید:

  • نیروهای جانبی زا به فونداسیون منتقل میکنند.
  • تغییر مکانهای افقی را محدود کند.
در ساختمانهای بلند باید ملاحظات ویژه‌ای برای جلوگیری از ایجاد نوسانات ناشی از باد در نظر گرفته شود. بزرگی نیروهای افقی اعمال شده در اثر باد به عوامل زیر بستگی دارد:
  • سرعت باد
  • شکل آیرودینامیکی ساختمان
  • وضعیت سطح نما
  • روشهای صلب کردن
یک قاب سازه‌ای فولادی را می‌توان به یکی از روشهای زیر مهاربندی کرد:
  • سیستمهای قاب صلب
  • سیستمهای قاب بادبندی
  • دیوارهای بتنی بصورت دیوارهای برشی یا هسته‌های بتنی
انتخاب روش صحیح مهاربندی، اهمیت عمده‌ای در طراحی سازه‌ای دارد و حتی ممکن است کل اندیشه طراحی یک ساختمان بلند مرتبه را تحت تاثیر قرار دهد. مهار بندی به وسیله اعضای بادبندی یا دیوارهای بتنی به صورت دیافراگم صلب، نقاط ثابتی را در ساختمان ایجاد می‌کند، به گونه‌ای که آزادی عمل درجانمایی و معماری داخل ساختمان را محدود می‌کند.
طراحی سازه های فولادی با توجه به اجزای تشکیل دهنده فضاهای داخلی ساختمان:
انتخاب سیستم مناسب برای اجزای داخلی ساختمان به عوامل مختلفی بستگی دارد. روشهای زیر به طور رایج در ساخت سقفهای متکی به تیر های فولادی به کار می‌روند:

  • دال بتنی پیش ساخته
  • عرشه فولادی با بتن درجا
  • دال درجا برروی بتن
عملکرد مرکب بین دال بتنی و تیر فولادی که در هر سه روش امکان‌پذیر است، سبب اقتصادی شدن ساخت می‌گردد. مسئله حفاظت قسمتهای فولادی سقف در برابر آتش‌سوزی باید در اجرای سقف در نظر گرفته شود. استفاده از سقف کاذب می‌تواند این کار را به خوبی انجام دهد. در سازه‌های اسکلت فلزی، معمولأ دیوارهای خارجی باربر نیستند، برای ساخت این دیوارها، بنابر شرایط موجود، از مصالح مختلف استفاده می‌شود.
توجیه اقتصادی سازه‌های فولادی
در ارزیابی اقتصادی یک سازه فولادی، فقط در نظر گرفتن قیمت مصالح ساختمانی و نیروی انسانی کفایت نمی‌کند و بقیه عوامل موثر در این موضوع باید مورد بررسی قرار گیرد. موارد زیر در اقتصاد یک ساختمان موثر است

  • قیمت زمین: بدلیل کوچک بودن مقاطع عرضی در ساختمانهای فولادی، فضای کمتری توسط اسکلت سازه اشغال شده و در مقایسه با سازه‌های بتنی، ساختمانهای فلزی در پلان دارای سطح موثر بیشتری هستند. بنابراین هزینه زمین در هر متر مربع مفید ساختمان، در ساختمانهای فلزی کمتر خواهد بود.
  • مصالح در دسترس
  • ارزش نهایی ساختمان: هرچه مدت زمان ساخت یک ساختمان کوتاهتر باشد، هزینه نهایی آن ساختمان کمتر خواهد بود. با توجه به روشهای مختلف ساخت سازه، متوجه می‌شویم که در مقایسه با سایر روشها، ساخت سازه‌های فلزی زمان کمتری صرف می‌کند.
  • هزینه اسکلت اصلی سازه (سفت کاری )
  • تاثیرنازک کاری
  • تاثیر نصب تجهیرات و تاسیسات
  • نحوه تاثیر این عوامل در بهره‌برداری بهینه از ساختمان
  • هزینه ایجاد تغییرات داخلی و بهسازی در ساختمان
  • هزینه تخریب (در ساختمانهای با عمر کوتاه)
میزان مصرف فولاد در ساختمانهای فلزی
در ساختمانهای فلزی، هزینه با توجه به میزان مصرف فولاد در هر متر مربع مساحت کف (تصویر افقی) یا متر مکعب ساختمان محاسبه می‌شود. هزینه ساخت و میزان مصرف فولاد به عوامل زیر بستگی دارد:

  • تعداد طبقات
  • بار اعمال شده به طبقات
  • دهانه‌ها در اطراف ستون
  • ضخامت سقف
  • سیستم سازه‌ای (سیستم انتقال بارهای قائم و جانبی)
انتقال بار در سازه‌های فولادی
سازه‌های فولادی مشتمل بر تعدادی تیر و ستون به شکل قاب و نیز شامل تعدادی تقویت کننده، به منظور ایستایی بیشتر می‌باشد. بدیهی است انتقال بارهای افقی و قائم از طریق این اجزاء صورت می‌گیرد. به این صورت که:

  • سقف ، بارهای عمودی را تحمل کرده و بصورت افقی، از طریق تیرها به تکیه گاههای تیر منتقل می‌کند.
  • سیستم باربر قائم (ستون‌ها)، بارها را از تکیه گاههای دو سر تیر به فونداسیون انتقال می‌دهد.
  • همچنین سیستم‌های مهاربندی قائم و افقی، بارهای جانبی ناشی ازباد،زلزله، فشار زمین و ... را به فونداسیونها منتقل می‌نمایند.
ماهیت انتقال بار از طریق تیرها به تکیه گاهها و روش قرارگیری تیرها (تیرریزی) عوامل زیر بستگی دارد
  • نوع مقطع قابل استفاده با توجه به طراحی معماری
  • فواصل تکیه گاهها و طول دهانه تیر با توجه به طراحی سازه‌ها
  • روش انتقال بار توسط اجزای باربر
  • سیستم تکیه گاهی انتخاب شده (صلب، نیمه صلب، ساده)
طراحی اعضای خمشی سازه های فلزی :
تنش مجاز برای اعضای خمشی بدون نیروی فشاری مطابق زیر است
الف) برای بال‌ها.
ب) برای اعضای جان ساخته شده از میلگرد و یا مقاطع غیر میلگرد.
د) برای ورق‌های نشیمن.
طراحی اعضای فشاری – خمشی سازه های فلزی :
در صورتیکه فاصله بین گره‌ها مساوی ویا بیشتر از ۶۰ سانتی‌متر باشد، اعضای فوقانی تیرچه‌ها باید به نحوی طراحی شوند که رابطه زیر در گره‌ها برقرار شود و همچنین باید رابطه زیر دربین دو گره برقرارگردد:

  • برای اعضای میانی تیرچه ها
  • برای اعضای کناری تیرچه‌ها
  •  Fe تنش مجاز اولر و L فاصله بین گره‌ها می‌باشد.
محدودیت‌های لاغری اعضا
ضریب لاغری(L/r) در اعضای میانی وکناری بال‌ها، همچنین در اعضا ی فشاری وکششی جان تیرچه نباید از مقادیر زیر تجاوز نماید:

  • در اعضای میانی بال فوقانی ۹۰
  • در اعضای کناری بال فوقانی ۱۲۰
  • در اعضای فشاری جان ۲۰۰
  • دراعضای کششی ۲۴۰
ضوابط ویژه اعضای جان تیرچه‌ها (کنترل برش)
حداقل نیروی برشی قائم که برای اعضاء باید در نظر گرفته شود. نباید از ۲۵ درصد عکس العمل تکیه گاهی کمتر باشد.
در مواردیکه اعضای جان تیرچه‌ها تحت اثر ترکیب تنش‌های فشاری وخمشی قرار گیرند. باید بر اساس ضوابط اعضای فشاری – خمشی طراحی گردند. در حالتی که خمش در این اعضا، موجب انحنای دو طرفه آنها گردد، ضریب Cm معادل ۰٫۴ در نظر گرفته می‌شود.
مقاومت جوش
اتصالات جوش اعضا باید بتواند حداقل دوبرابر بار طراحی تیرچه‌ها را تحمل نماید.
وصله
اتصال دوپروفیل بصورت وصله درهر نقطه ازبال مجاز است. وصله بصورت جوش سربه سر در اعضای کششی باید بتواند حداقل مقاومتی معادل 1.14Fy.A را از خود نشان دهد که درآن A کل سطح مقطع عضو وصله شده می‌باشد.
۲-طراحی مرحله دوم بعد از گرفتن بتن:
در این مرحله مقطع مرکب شامل تیرچه فولادی وبتن باید تلاشهای ناشی ازتمام بارهای وارده به سقف (قبل و بعد از گرفتن بتن) راتحمل کند.
 

درحال بارگزاری